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The general characteristics of the totality of orbits in a two-dimensional potential, for a fixed value of
energy, can be found by studying the invariant curves on a surface of section. The rotation number on
each invariant curve is found as a function of its distance from the central invariant point, representing
a stable periodic orbit. The tube orbits are represented by invariant curves of special forms which are
called islands. There are no islands or tube orbits in separable potentials, while in the general case of non-
integrable systems it seems that there are infinite sets of islands and tube orbits. The rotation curve (rotation
number versus distance from the center) can be found approximately by means of the third integral. The
rotation number near a stable symmetric periodic orbit is equal to £a7"/27, where =ia are the two nonzero
characteristic exponents and T" the period of the periodic orbit. The stability of the central periodic orbit
(near the y axis) and the orbit y=0 was studied. It was found that in some cases the orbits remain stable
even when the zero velocity curves are open. Some applications to galactic problems are mentioned.

I. ROTATION CURVE

N this paper we deal with sets of orbits in a three-
dimensional subspace of the phase space of a two-
dimensional potential corresponding to fixed values of
the energy. By studying the intersections of the orbits
by a surface of section we can distinguish three types
of orbits: (a) The isolating orbits, whose points of
intersection lie on a smooth curve; such a curve is
called an invariant curve. (b) The quasi-isolating (or
semi-ergodic) orbits, whose points of intersection seem
scattered at random, filling part of the available space
(the space inside a limiting curve defined by the energy
integral). A limiting case is the ergodic orbits whose
points of intersection fill the whole available space. (c)
The escaping orbits. Such orbits appear only if the
energy integral surface extends to infinity.

A set of orbits in a given potential for a given energy
constant is called isolating if all the orbits are isolating.
It is called quasi-isolating if part of the orbits are
isolating and part of them quasi-isolating. Finally, it is
called ergodic if all the orbits are ergodic. The isolating
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F16. 1. Regular invariant curves and islands in the case
A=1.6, B=0.9, e=2, #=0.00765.
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and the ergodic cases seem to be rather exceptional,
while the quasi-isolating case is the most general one.
In the quasi-isolating cases the isolating orbits form
a set of measure greater than zero. Exact theorems
about the existence of sets of isolating orbits and of
invariant curves in the immediate neighborhood of
invariant points of the stable type are given by Moser
(1962, 1967).

We presently consider cases that are isolating or
quasi-isolating, but nearly isolating, i.e., the area
covered by the quasi-isolating orbits is small. In such
cases the stable periodic orbits are represented by
invariant points, surrounded by closed invariant
curves.

On each invariant curve one can define a rotation
number, which is the asymptotic value of the angle
between two successive points of intersection, as seen
from the invariant point. By ‘“asymptotic” we mean
the mean value of # angles between successive vectors,
with the central invariant point as the origin, when #
tends to infinitely. We use the circumference as the
unit of angle. A rotation curve gives the rotation
number along each invariant curve as a function of the
distance from the ‘“‘center” along a certain radius.

In many dynamical problems the potential is of the
form

1)

We usually take the plane y=0 of the space xyX as
the surface of section. If the energy is not very large,
there is a stable invariant point near the origin when-
ever the ratio 4%/B% is not near 1 or 2.

As an example we consider the case

V =1(4Ax*+ By*)+higher-order terms.

V=31(4x2+ By?)— ex)?. 2)

In this case the central stable invariant point is on
the & axis (T=A%; Fig. 1). The corresponding rotation
curve is given in Fig. 2, where the Z axis represents the
value of Z=A%x at the point of intersection of each
invariant curve with the Z axis. The central invariant
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point corresponds to the maximum 7, while the mini-
mum 7 corresponds in this case to the outermost
invariant curve -

B+ X2=2h,

where 7 is the total energy; this curve corresponds to
the periodic orbit y=0.

The rotation number takes, eventually, rational
values. For example, in Fig. 2 it takes the value %. At
this point one sees a straight line segment on the
rotation curve. All the points of this segment correspond
to invariant curves with the same rational rotation
number. There are three sets of such invariant curves
in Fig. 1, which are called islands. Each set contains an
infinity of islands surrounding one of the three stable
invariant points, corresponding to a stable resonant
periodic orbit, which makes four oscillations along the
x axis, while it makes three oscillations along the y axis.
Any orbit whose initial conditions are near this resonant
periodic orbit always remains near it and is called a
tube orbit. The corresponding invariant curve is com-
posed of three islands.

On the other side of the rotation curve at the point %
we have an invariant point corresponding to an un-
stable periodic orbit. The rotation curve near this
point seems to be discontinuous. In fact orbits very
near the unstable periodic orbit do not give invariant
curves at all. They are quasi-isolating orbits, whose
points of intersection by the surface of section do not
lie on a simple curve but show a slight dissolution,
filling a narrow but finite strip.

These phenomena are clearer when the perturbation
is large. A more detailed discussion of the forms of the
islands and the dissolution of the invariant curves was
given elsewhere (Contopoulos 1967). One can see that
less marked discontinuities also appear for other
rational values of . However, the set of points belonging
to these discontinuous regions has a small measure.
Therefore for most values of % the corresponding
rotation number lies on a smooth curve.

In the present paper we show that phenomena
corresponding to apparent discontinuities of the
rotation curve or its derivative (islands and dissolution
of invariant curves) appear only in nonseparable
dynamical systems. In separable systems the rotation
curve is completely smooth and no islands appear for
rational values of the rotation number.

If a dynamical system of the form (1) is separable,
then a change of variables can bring the Hamiltonian
to the form

H= H(‘I)m,,@zol), (3)
where
®y0'=1(4x"24X"?),

By’ =3 (By*+-1"). 4

Then the equations of motion are

dx’ OH 0H dX' 0H 0H
———-..—..-—————:X, y —— ————=—Ax’ y
di 6X’ 6<I>10’ dt 6x' 6@10'
dy oH  oH 4V’  oH oH
———=V'—, —=——=—By—, ()
dt ay' 6<I>20' dt ay’ 8@20'

We derive that ®1o’, ®50’ are integrals of motion, and
the solutions for «’, X', 3/, ¥V’ are

(2940")? oH
x'= sin[A% (t— t1):|,
A? 0Py

- 0H
X'=(2®19")* cos| 43 (t—tl):|,
L 4%y
(2@, 1 OH
y'= sin| B} (l—tz)],
B L 3Py
r O0H
Y'=(2®4")? cos| Bt ,(t—lz):l. (6)
L 20

If we write &= A%’ and take as the surface of section
the plane »'=0 in the space #'y’X’ we find that the
moving point crosses this plane, moving upward, at
the times

P %)
=l :

" B(oH/ 9%u)

where % is an integer. Then

z sin oH |' 2k

_—= (2@10’)* A‘} tz—t1+ :”’, (8)
D¢ COs 6<I>10'|_ B%(aH/a(pgo')

i.e., the invariant curves are circles 24 X"?=2%,.
The angle of the direction of a point (&',X’) from the
origin with the & axis is

r  oH AMNOH/3%1y')
p=——A} (to—ty) — 2kx————.
2 ady Bi(3H/0%)
0‘70 L T T T 17 T T T T T T T T T T T T T T T T T
]
L . S ) |
0.65 ;:,—;.7 \
B :
.0.60 T SR T T WU ST W W T | | IS P A ]
-0.12 -008 -004 o] 004 008 o2

X

F1c. 2. Rotation curve in the case 4=1.6, B=0.9, e=2,
£=0.00765. The maximum rotation number at £=0.025 is
marked by a vertical line. The rational rotation numbers »=»'/m’
with m’ <17 are marked.
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By subtracting the angles for two values, & and 241,
and dividing by 27 we find the rotation number

A (0H/0%1')
r=———————(mod 1). (10)
BY(0H/0%®s")

This rotation number is constant along each invariant
curve.
If we set now
XI=0, ‘13'10/:%11-’}2 and ‘1320,=%Y’2= h—f}2, (11)
we find 7 as an analytic function of Z. If H =&+,
only, then r=A4%/Bt=const. In general, however, a
separable Hamiltonian is of the form

H = ®,¢'+®2/+higher-order terms;
then
r= (4%/B*%) (1+higher-order terms), (12)

and 7 is variable. The rotation curve is, to a first
approximation, a parabola, if the higher-order terms of
H begin with quadratic terms in ®y/, ®y'.

In all such cases the rotation curve is a smooth
curve without any discontinuities or straight line
segments, etc. In fact, » is a smooth function of #?
which does not behave differently for rational or
irrational values of 7.

If ~ is rational, the corresponding orbit is periodic.
But orbits with initial positions on the same invariant
curve are also periodic with the same period. Thus the
invariant curves which correspond to a rational rotation
number are composed only of invariable points, corre-
sponding to an infinity of periodic orbits.

The characteristic exponents of these periodic orbits
are equal to zero because of the existence of two analytic
integrals of motion, namely, the Hamiltonian and the
“third” integral &, (Poincaré 1892). However, these
periodic orbits are unstable, because nearby orbits
with a rotation number 7 slightly different from the
given rational number #'/m’ may go very far from the
periodic orbits. For example, if the first invariant
points of the two orbits are in the same direction, the
nth invariant points will be at an angle #(r—u'/m’)
apart.

The essential difference between separable and non-
separable systems is the nonexistence or existence of
islands. This property is true for any surface of section
because it corresponds to the nonexistence or existence
of tube orbits and does not depend on the special
surface of section used. It seems that in general two-
dimensional systems are nonseparable; then the surfaces
of section include islands of different orders.

There are some special nonseparable cases where we
have a new analytic integral in addition to the Hamil-
tonian. We call such a case an integrable one. Such is,
e.g., the case for the Hamiltonian

H=3}(42+ X2+ By+ V2)+éS,,

HADJIDEMETRIOU

where
So=2BYY (X?—34x2X)—[34 X — (4%)*](V2— By?)

when 34%=2B% It is easily seen in this case that
d(q>10+q920)/dt=0; hence

®10-+Pg0= /1= const
and
So=hy= const.

If we intersect all the orbits by a surface of section
y=0, we find
B+ X4 V2=20y
and
(B—3EX2)V2=hs;

hence the equation of the invariant curves is
(®—32X%) (27— 32— X)) =hs.

If we set
T=7 cosf, X=r sinf,
we find
cos3f= hg/fs (2h1— 7’2) .

If %,>0 this equation represents three islands,
symmetric with respect to the lines =0, =2x/3 and
0=4r/3. If we set 6=0 we find the intersections Zo
of the islands by the Z axis from the equation

To® (2]11—-.'202) —he=0.

This equation has, in general, two positive roots
smaller than (2k)3%, on each side of &= (641/5)%. In the
special case o= (6/1/5)* we have a double root, which
corresponds to a periodic orbit making three oscil-
lations along the y axis and two along the x axis.
This periodic orbit intersects the surface of section at
the points [7= (6k1/5)}; 6=0, 27/3, 4w/3], which are
the centers of the three sets of islands.

For negative values of %, we have three more sets of
islands around the points [7= (64/5)¥;6=m, 57/3,7/3].

The two stable resonant periodic orbits are

1= (6h1/54)} sin[wA(t—11)],
y1= (4h1/5B)* sin[wB],
X 1= (6h1/5)t cos[wAt(t—t)],

V1= (4h1/5)* cos[wB¥],
where
w=1+426(6k/5)}

and wd¥=3r (first orbit, #;>0), or —3r (second
orbit, #,<0).

If we mark only every third intersection of an orbit
by the plane y=0, we find one island for each orbit
instead of three. We can study the rotation number
along a set of islands with respect to the “central”
invariant point. This new rotation number is a smooth
function of the distance 7 of an island from the “central”
point along a fixed line. This is true because no islands
of second order appear. In fact we know beforehand
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that all invariant curves are composed of three islands
(except the unstable periodic orbit #= X =0).

Therefore we conclude that integrable systems (i.e.,
systems having a second analytic integral besides the
Hamiltonian) have a finite number of sets of islands
on a surface of section. In the special case of separable
systems we do not have any islands at all. On the other
hand, nonintegrable systems probably have an infinity
of sets of islands of different orders around the “central”’
invariant point, and also around the “center” of each
island. The “center”” of each set of islands corresponds
to a stable resonant periodic orbit.

In nonintegrable systems each set of islands can be
found by using a special form of the “third” integral
(Contopoulos 1967). The “third” integral in this form,
however, is not applicable, in general, for another set
of islands. Therefore in integrable systems the “third”
integral has a unique form, while in nonintegrable
systems it probably has an infinity of forms.

In the case of large perturbations the rotation curve
can no longer be drawn, except for small parts. This is
due to the fact that for quasi-isolating (semi-ergodic)
or ergodic orbits the rotation number is no longer
defined ; the mean value of # angles between successive
points of intersection of an orbit (as seen from a fixed
point) does not tend to a definite value as # tends to
infinity. These phenomena and their explanation are
described elsewhere (Contopoulos 1967).

We find presently the approximate form of the
rotation curve in the case of the potential (2) when
A*/B?is not near 1 or 2.

For this purpose we use the von Zeipel method, as in
a previous paper (Contoupoulos 1963). We use a
generating function .S to perform a change of variables,
such that the new Hamiltonian depends only on the
integrals ®1¢’, ®50’. This is explicitly carried out up to
terms of fourth degree in the variables.

The Hamiltonian

H=Ho+el1=5(Ax*+X>+ By + V) —exy?, (13)
expressed in the new variables, becomes
H=H(+&H)/+ -, (14)
where H(' is of the same form as Ho; i.e.,
Ho'=®10'+ a0, (15)

and H,' is quadratic in ®¢’, ®q'.

e RO
Si= | x y 2dt=T SIHEA7(1— 2'1)] 51112[3%/]dl‘=

The new variables are found through the implicit
relations

as aS as aS
x,':_’ y,=_—v X=_’ = (16)
X’ oY’ ox dy
where
S=8S¢+eS1+---. a7
Here
So=xX'+y¥’ (18)

and the Sy are found as follows. By solving Eqs. (16)
we find x, X, y, ¥ as series of 2, X', 9" V’, through the
partial derivatives of S}, (considered as functions of the
new variables). We introduce these values in H and
gather together the terms of the same degree in e. The
terms of degree k(k>1) are

aSk aSk aSk 6SL ,
X’ Ax'—+V’ By—-+Ri=H;)', (19)
ax ax’ 9y’ Y’

where R; depends only on the known terms .Sy, Si,

oo, Shot
If we write
Hk/—Rk= Qk, (20)
we find
Sk=/det, 21)

where &', X', 3/, ¥’ in Q; have been replaced by the
solutions of the system

de’  dX' dy dY’

= - (22)

X' —dx ¥ —By',
ie.,

(2®4y) (2®4)?
x'= ’ sin[A¥(t—1)], ¥v'=

1
z

sin[ BY]

1
z

(23)
X'=(2®1y")* cos[ A (1— 1) ],

V'= (2®4')* cos[ Bi].

Qr is a pure trigonometric function of ¢ if H,' is
taken equal to the constant term of R, (when R is
expressed as a trigonometric function of ). Then Sk
does not contain secular terms and can be expressed as a
polynomial of degree k42 in &/, X', 4/, V.

It is easily found that H,=0, and

(2@10')%(2@0’)‘ cos[A(t—t)]
A*B 244

+2A% cos[A¥(t—11)] cos[2B#]+4 B sin[ A} (1—ty) ] sin[2B%]

4(A—4B) }

T A(A—1B)

[(2B—A)Xy+2XV2424xy7 ] (24)
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Further

_ 3105, _oth a5y 0H13S1 0Hi 3S1 oHy/3S: o5, 5 asl> Oy FS1 351 IS asl)
TOX o ox oX' ov' 9y a9y o' oxX'\ax? 0X' ax'dy ov') ov'\ayor x| "9y av”
+ilﬁ< 5 05 oS asl> ?ﬂ( IS 91, 5 a_si>+— 62H0(§i> | o 351 35,
3 \oX'ax’ 9X' X'y oY’/ oy \aY'ax 9X' aY'ay aY'/) 2 ax*\aX') ax'dy oX 9V’
13Hy 05\ 1 PHo 35195 1 #Ho 95,081 1 ®Ho 95:95: 1 @H 95195
+ ay'2<ﬁf_> T 20x9X 9X’ ' 209x97 9X’ 9y 20y0X oV’ ax' 20y V' oV’ oy
O'Hy 95:95: 18°Hy(dS:
) (25)

n
AX'aY’ 9x' dy 2 9V\ay’

1 6%H 0/6&)
2 0X"\ 8’
Using the value (24) for S; and the values (13) for Hy and H; we find

’

| ylz[(zB A) ’2—|—2Y’2]+4x,y[2XY—|—A ]],L ! { X ’rZX,y/JrA w1
(A 4B){ ’ ¥ T(A_4B)z A L xy

27" 4(2B—A)X'Y’
——-————[(ZB A)y 272+
2 4Bx'y’

[(2B—A)y

The part of R, outside the trigonometric terms, when
%', X', 9', ¥’ are replaced by their values (23), is found
after some operations as

/

[3(8B—34)®y'+2Bd1']. (27)

T AP (A 4B)

If we omit higher-order terms we have, to second-
order approximation,
= &1+ Poo’+ P20’/ A B2 (A—4B)]
X[1(8B—34)®y+2B%®10']. (28)

Then using the formulas (6) we find two oscillations
along the x’ and y' axes with frequencies, to order €,

wi=AH{1+[2®2'/AB(A—4B) ]} (29)
and
we=B{1+4[e&/4B*(4—4B)]
X[3(8B—34)®3'+2B%"10]}. (30)

The rotation number is

w1 H e
r=——(modl)=— ’1+———-
we Bi AB2(A—4B)

X[%(SA—4B)<I>2O'—ZB<I>10']} (mod 1). (31)

[2X'V'+Axy 1+

4(2B—A)x'y
———~—A——[2X'Y’+Ax'y']

1 2B
—[(2B—A)y 42V p+—[2X'V'+Ax'y P
i y 1 A2[ y']

2
+2y’2Y’2+;-1—2[ @B—A)X'y+Ax'Y' 2. (26)
If we write
By’ = h—<I>10'+0 (62), (32)
where % is the total energy, we find
A¥( @(BA—4B)h
r=— {1-1———
B} 2AB*(A—4B)
3€2(I)10,
——————— 1 (mod 1). (33)
2B%(A—4B)

This means that for 4>4B the rotation curve has a
minimum at the center (®,/’=0) and is concave
upward, while for 4<4B the rotation curve has a
maximum at the center and is convex upward.

The limiting values of 7, to order ¢, are

Alr  @(BA—4B)h

TR 1+2AB2(A——4B):|(mOd DG

A} 2eh
y= __[1____
B AB(4—4B)

and

:|(mod 1), (35)

for ®1¢’=0 and ®,)'=#, respectively. The last value
corresponds to an orbit very near y=0. For example,
for 4=1.6, B=0.9, £=0.00765, we find &,¢'=3z"2
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(for X’=0) and
r=— (4/3){14 &(—0.00177+0.46352)} (mod 1)
and if e=0 we have r=%. For e=2 we find
r=2(1.014—3.70%)

and the maximum value of 7 is 0.676 at £=0.
The exact form of the rotation curve is given in
Fig. 2. The maximum value is r=0.682 at £=0.025.
In the case 4=0.4, B=0.9, 1=0.00765, we find

r=— (w1/ws) (mod 1)=1—2[14&(0.00940.2932)]
=1—0.006—0.19&22.

Therefore for 0 the rotation curve does not
reach the rational value §. This behavior corresponds
to the fact that when 4}/Bi=% we do not have any
resonance phenomena (resonant periodic orbits and
tube orbits).

The above calculations are useful whenever e is
relatively small. They roughly give the range of varia-
tion of » and thus indicate the islands which should
be looked for. If e is large, inclusion of higher-order
terms is quite necessary in order to find an approxi-
mately correct form of the rotation curve. Further, the
above method does not give the straight segments of
the rotation curve which represent the islands. These
can be found only by using the special resonance forms
of the third integral.

II. ROTATION NUMBERS AND CHARACTERISTIC EXPONENTS

The maximum (or minimum) rotation number
corresponds to the central periodic orbit. We prove that
this rotation number, which is defined as the limit of
the rotation number of a nearby orbit, is equal to
=+ (@T/2x)(mod 1) where —tia are the two nonzero
characteristic. exponents of the stable periodic orbit
and T its period.

Let

x=2%(t), y=y(t)7 F=X=X(1), y=Y=Y (), (36)

be a stable periodic orbit with period T, symmetric
with respect to the x axis, and

d(O=2)+E&, Y (O=yO+&,
X'O=XO)+E&, Y=Y+, (37)

a nearby orbit corresponding to slightly different initial
conditions. The ¢/s are functions of the time and are
considered to be small. Let =0 when the periodic
orbit crosses the x axis perpendicularly. Without loss
of generality, we can assume that, at this time, a
particle moving on the perturbed orbit (37) crosses the
% axis as well. We call T, the time when this particle
crosses the x axis for the nth time in the same sense,
and set

To=nT+HAT,. (38)

According to the above assumptions, we have

Y (T)=y(Tn)+£(Tn)=0 (39)

for all #>0. Substituting T, from Eq. (38) into Eq.
(39), expanding in Taylor series and keeping only
first-order terms in AT, and &;, we obtain

ATp=—£&T)/Y(0), (40)

because y(#T)=%(0)=0, and ¥ (»T)= Y (0).

The functions £; depend on the initial conditions of
the perturbed orbit (37) and can be expressed, to first-
order approximation, as a linear combination of four
linearly independent solutions of the variational equa-
tions corresponding to the periodic orbit (36).

We find four solutions of the variational equations
with initial conditions (1,0,0,0), (0,1,0,0), (0,0,1,0),
(0,0,0,1), and we construct a (4)X4) matrix whose
columns are these four solutions at ¢{=T'; this is called
the monodromy matrix A. The equation |A—e*TI| =0,
where I is a (4X4) unit matrix, gives the characteristic
exponents w. If the orbit (36) is stable we have two
characteristic exponents zero and the other two conju-
gate pure imaginary —ia. One can take as four in-
dependent solutions of the variational equations the
vectors f1(f), fa(D)+if1(2), f3(¢) cosat — fu(¥) sinet and
fa(t) sinat+- f4(f) cosat, with components f1:(f) (i=1,
2, 3, 4) etc., where f1(0) and f;(0)==if4(0) are the
eigenvectors corresponding to the characteristic ex-
ponents zero and =i, and f,(0) is the solution of the
system (A—1)f5(0)=T/1(0) (Wintner 1947). Then the
solution £;(¢) can be expressed in the form

E(O)=r1frtrafocttrafrtrs(fs: cosat— fu; sinat)
+74(fsi sinat+ fa; cosat) (=1, ---,4). (41)

Here the f.,’s are O(1), and the ;s are small constants,

O(%,), depending on the initial conditions. Taking into

account that at ¢=0, y(0)=0 and X(0)=0, we

easily find that, in the case of the potential (2), we

have f11(0) = f14(0) =0.

It can be shown (Hadjidemetriou 1967) that for
t=0 we have

2]

A=, £O=|]

b2 ) 0 b2

\04 as

’bf Cbl
1= |21, = |03, w
\bz, Cbz

where

“and as, as, ¢ are constants, depending on the symmetric
periodic orbit (36).
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From Eqgs. (41) and (42) we have, taking into ac-
count that f;;(nT)= f,;(0), the relations

§1(nT) =7r9a9+b1(rs+crs) cosnal
Fb1(—crs+rs) sinnaT, (44)

Qs
52 (’}’LT) = flbl-l-nTrle"I‘—(Crg— 1’4) cosnal
c

a
+_E(r3-|- rqc) sinnal, (45)
¢

as
E(nT)=ribo+nTrbst—(crs—rs) cosnal
c

as
+—(rs+ric) sinnaT. (46)
c

Equation (40), because of Egs. (43) and (45), becomes

AT = —r1—nTrs— (as/cb1)p1 cosnaT

— (@s/cbr)ps sinnaT, (47)
where

p1=cr3—ry,

P2=7’3+67’4. (48)
The deviations in the coordinates x, X between the

periodic and the perturbed orbits, when the latter
crosses the x axis at the times ¢=T,(n>0), are given by

&' (Tn)—2(Tw)=£1(T), (49)
X' (Tn)=X(Tn)=£5(T). (50)

Expanding in Taylor series, we have, to first-order
terms in the 7.s,

0xn=2o"(T,)—x(0)= &1 (nT), (51)
0X,=X"(T,)—X(0)=&:(nT)+b,AT,, (52)

because «(nT)=x(0), X (nT)=X(0)=0, X (nT)=X (0),
X(nT)=X(0)=b,. Hence, using the values (44), (46),
and (47), we find

0xn=2"(Tn)—x(0)
=7282+b1[ p2 cosnal— py sinnaT], (53)

0Xn=X"(T2)—X(0)= (1/¢c)[as—az(b2/b1)]
X[p1 cosnaT+pe sinnaT].  (54)

The quantities 8x,, 6X, are the coordinates of the
points of the invariant curve of the perturbed orbit
(37) with respect to a frame of reference centered at the
invariant point [x(0),X (0)] of the periodic orbit (36).
These quantities satisfy the relation

LOxn—raa2)?/ A%+ (6X )Y/ B*]=1,  (55)
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where
AR =l (pp?) = b* (146 (r+74)

and (56)
B¥2=[(b1a3— a2b2)*/b:%c ] (14-¢2) (r52+7.2).

Hence, the invariant curves of the orbits in the neighbor-
hood of the periodic orbit (36) are ellipses whose centers
are at the points [x(0)+7.a5, X (0)]. We note that the
centers of all ellipses lie on the x axis, since X (0)=0.

Let us call now 6, the angle between the x axis and
the line defined by the center of the ellipse (55) and
the #th point on the invariant curve. Using Egs. (53)
and (54) we obtain

X'(Tn)—X(0)

tand,=
2 (Tn)—x(0)+7r0as
1 cosnal+ps sinnal
= ap P , (87)
P2 cosnal— py sinnaT
where
g= (dgbl—dzbz)/cblz. (58)

If we define the angle o(—3r< o<3m) by the relation

tang=p1/ps, \ (59)
Eq. (57) becomes

tanb,= o tan(naT+ ¢). (60)

From this equation we deduce that the rotation angle
7, defined as the mean value of the angles (0,—0,-1),
is equal to

r==4aT/2r (mod 1), (61)

where the plus sign corresponds to ¢>0 and the minus
sign to ¢<0. In fact if, say, ¢>0 and 2kr<naT
+ ¢<2kr+ir, then naTH ¢<6,<2kr+3ir. Hence

aT < (0,— ¢)/n<aT+ (x/2n);
therefore
lim@,— ¢)/n=aT.

As an example, we consider the potential field (2),
for e=0. In this case, the general solution is

x=1x9 cosA ¥+ (Xo/A?) sind ¥,
y=1y, cosBY+ (Vo/B?) sinB¥,
X=—uxpA?%sind ¥+ X, cosd ¥,
Y= —1y,B!sinB¥+ ¥, cosBY, (62)
where the zero subscript denotes the initial conditions.
The characteristic exponents of a certain periodic
orbit can be found from the trace of the monodromy
matrix A. The four columns of this matrix are the

partial derivatives of the functions x, y, X, ¥V of the
periodic orbit with respect to %o, yo, Xo, ¥ respectively,
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for t="T. Hence, using Egs. (62), we obtain

cosAiT 0
Am 0 cosBiT
| —A¥sindiT 0
0 — Bt sinBiT

and consequently
trace=2(cos4 *T+cosBiT). (64)

If A3, \s are the two conjugate characteristic roots of a
periodic orbit, we have the relations As-+\s=trace—2
and As\s=1. Consequently, from Eq. (64) we obtain

A3 4= cosA T+ cosBiT—1
%[ (cosA T+ cosBiT) (2~ cosA T~ cosBIT) ]t (65)

Let us consider now the periodic orbit which oscillates
up and down along the y axis:

i=X=0, g=(To/BY)sinB¥%, V=Y,cosB¥. (66)

The period of this orbit is equal to T'=2x/B* and its
two conjugate characteristic roots are found from
Eq. (65) to be

Ns,4=cos(2mA?/BY) i sin(2r A%/ BY), (67)
from which we obtain the characteristic exponents
+ia=21(2r/T)(4%/ B?). (68)

If in Eq. (63) we set T'=2n/B? and take into account
that the eigenvectors f3(0)=4f4(0) corresponding to
the eigenvalues (67) are of the form given by the last
two equations of (42), we find that in this case we have
ay=0by=0 and ¢=—a3/(5:4%). Hence, from Eq. (58)
we obtain o=—A4% and using Eqgs. (61) and (68), we
obtain finally that the rotation number 7 is

r=—(A4/B)* (mod 1). (69)

The value of 7 given by Eq. (61) is the maximum or
minimum rotation number corresponding to the central
periodic orbit, according to the value of A —4B. In the
case A=1.6, B=0.9, the value of 7 is the maximum
rotation number for each value of e¢. When e=0 we
find from Eq. (69) that r=0.666---. For ¢>0 the
maximum rotation number increases as e increases up
to the value =1 for e=4.305. For larger ¢ the central
periodic orbit becomes unstable. This is shown in Fig. 3,
which gives the trace and the rotation number as a
function of e.

It is seen that the value ¢=4.305 is smaller than the
escape perturbation: ee,=4.6017, which is marked in
Fig. 3. This is the value of € for which the curve of zero
velocity

Aa?+ By —2exy*=2h

opens up and the moving point may go to infinity.
Hence
€esc=3B(4/2h)%.

(1/4%) sind*T 0
0 (1/B?%) sinB?T
cosAiT 0
0 cosBiT | (63)

In other cases the central periodic orbit is stable even
beyond the escape perturbation.

The values of r corresponding to the invariant curves
very near the central periodic orbit, for each value of
¢, are given by Eq. (34).

III. STABILITY OF THE ORBIT y=0
The equations of motion in the potential (2) are
dx/di=X, dy/dt=7,
dX/di=—Ax+ey?, dY/di=—By+2exy, (70)
and admit the periodic solution
x=1x9 cosA ¥+ (Xo/A%) sind¥, y=0,
X=—A¥,sind¥+X,cosd¥, V=0 (71)
with period T=2r/4% We note that this solution is
independent of the value of e. Its stability, however,
depends on ¢, as we show below.

The variational equations of the system (70) as-
sociated with the periodic solution (71) are

déy/di=&s, ds/dt= &,
dés/di=—A%, dEs/di=—Bt+2exts,  (72)

where « is given by the first equation (71). Without loss
of generality we can set xo=0; then

x=(2h/A)* sind . (73)

The system (72) can be separated into two in-
dependent systems. The first, containing £, and &,
is independent of € and its general solution is

£1=£1(0) cosd¥+[£3(0)/AY] sind ¥,
£3=—£1(0)A? sind -+ £5(0) cosA t. (74)

Trace T
o VLU
3 08
| 14
2 Q6
Troct
1 P
o} 1 2 Z; 4 €ese €

F16. 3. The trace and the rotation number of the central
periodic orbit corresponding to 4 =1.6, ¢=0.9, £#=0.00765, as a
function of e. The unstable region is shaded.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1968AJ.....73...86C

FT96BAT.- - C.C73.-..86T1

94 G. CONTOPOULOS AND 7J.

The second part can be written in the form
£2= — (B—2ke sin4 %t)&, (75)

which is a Mathieu equation. Its solution can be
obtained as a series in powers of ¢, of the form

Ea=Exotebart-pet- - .

If we substitute Eq. (76) into Eq. (75) and equate the
terms of the same order, we find that the functions £,
satisfy the systems

(76)

£s0=Es0, Eso=—Ea0, 77
£2n=£4n (”= 1’ 27 o ');
£in=—Bta+2(2h/A)} sind ¥ty n_y. (78)

We note that the systems (78) are linear nonhomoge-
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neous systems in £, £1,. We call A(f) the matrix
cosB¥
a0=(
—BtsinB¥  cosB# (79)

whose columns are the solutions of the homogeneous
part of the systems (78), corresponding to the initial
conditions (1,0) and (0,1), respectively. Then a solution
of the complete system (78) is

B sinB%t)

2 t 2 ¢
£2n=z Ot]j/ Aszndt, £4n=z agj/ Aszndt, (80)
J=1 0 =1 0
where the a;; are the elements of the matrix (79), the
A,; its minors and the R, the nonhomogeneous part
of Egs. (78). Applying Eqgs. (80) iteratively, we find
that the function &1(f), corresponding to the initial
conditions (1,0) and the function £,1(¢), corresponding
to the initial conditions (0,1) are up to second-order
terms in e,

(2h)%e
£ol=cosBd———————[ B}(4+—2B?) sin(4 4+ BY)i+ B} (4 1+ 2B?%) sin(4t— B})i—2(4 —2B) sinB¥
1B\ A_iD) ( ) ( ) sin( )—=2( ) ]
he r _ 24} BH(Ai—2BY) BH(AM-2BY)
+ —4A4% sinB#——- cos Bit—————————— cos (24 -+ B¥){———————— cos (24— B#)¢
24 (AB)Y(A—4B)L Bt AY(AIEBY AY(Ai— BY)
8(4—2B) 8(4—2B)
————— cos(4i+Bi){———————cos(4i— B¥)i—2D cosB*t]. (81)
A¥(A34-2BY) A¥(Ar—2BY)
and
21/ B)te
£ =cos Bit——————[ (41— 2BY) (A -+ B) sin (A1 + BY)i— (414284 (43— BY) sin (41— BY)i+4B sinBi]
A(A—4B)
het (41—2BY) (244 BY) (A++2B1) (241 — BY)
-+ - |_— — cos (244 BY) i+ cos(24%— B#)¢
24(AB)Y(A—4B)L AY(A+BY A} (A1—BY)
16 B} (414 BY) 16B}(41— BY) 44
—————————— cos(4+ B¥)t——————— cos(4— B)i— 44 % sinB¥+4—— cosBi+2D’ cosB%til, (82)
AH(AM-2BY) AY(41—2BY) Bt

where D, D’ are constants such that the second-order
terms of &1, £, are equal to zero when ¢=0.

The stability of the orbit (73) is studied by calcu-
lating the trace of the monodromy matrix. The first
diagonal element of the monodromy matrix of the
system (72) is equal to & (T), given by the first equa-
tion (74), for £(0)=1, £(0)=0, and the third diagonal
element is equal to £(7), given by the second equation
(74), for £1(0)=0, £(0)=1. The second diagonal
element is £(T), given by Eq. (81) and the fourth is
£M(T), given by Eq. (82). Hence, finally, we obtain
that the trace of the monodromy matrix of the system
(72) is, up to second-order terms in e,

Bt 8rhe B}
trace=2-+2 cos2r sin<27r——>.
At A(AB)¥*(4—4B) Ar

(83)

The trace is between 0 and 4 if € is small and the ratio

B#/A% is not near % or 1. Therefore the orbit y=0 is

stable for small ¢, unless the ratio 4%/B* is near 2 or 1.
In the case A~4B we write

AB=A+ek; (84)

then 2B*/A%=1+ (ek/2A)+ - - - ; hence, to second-order
approximation in e,

trace= (w2e2/4A%)[k2— (32h/A)]. (85)
The orbit is unstable if
—4(2h/A)i<k<4(2h/A). (86)

This result is the same as that found in a different way
by Contopoulos and Moutsoulas (1966). Similar results
appear whenever A~~B.
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If € is large the orbit y=0 may become unstable.
This is seen in Fig. 4. In the case 4=1.6, B=0.9 we
have from Eq. (83), for small e,

trace=2— (rhe?/0.48). (87)

For e=2 and %#=0.00765 we find trace=1.80 and for
e=4 trace=1.20 while the real values are 1.80 and 1.24.
Therefore the above formula gives roughly correct
results even for fairly large values of e.

The value eee=4.6017 is marked in Fig. 4. We
notice that the orbit y=0 remains stable even beyond
the escape perturbation. Therefore orbits near the
periodic orbit y=0 do not go to infinity, although the
curve of zero velocity is open.

The rotation number for an orbit near y=0 can be
found as follows. When such an orbit crosses for the
nth time the x axis going upward we have £!=0,
£I>0, hence

BT, =31+ 2nm+ eq1+ €, (88)

where ¢; and ¢, are to be found from Eq. (81). At this
instant we have

T=Atx=[(2h)+£(0)] sind T+ £1(0)A* cosA*T,,
and
X=[(2h)*+£;(0)] cosA*T,— £(0)A? sind*T,; (89)
hence the angle between the origin and the point
Z,X) is
0n= (P‘—A%Tn) (90)
tang="[ (2k)*+£(0)]/[£(0)41]. (91)

Thus the rotation number is

where

r=lim

6, A¥ /3r
(~——|— Inm+ egr+ 62QQ) (mod 1),

2mn 2rnBi\ 2
(92)

It is easily seen from Eq. (81) that ¢; contains % only
in trigonometric terms, while the part of ¢, which is
proportional to » is provided by the secular term of
order €, i.e., it is contained in

2heT, sinBT,

ABHA—4B)

2he(2mn)
S ——— (93)
AB(A—4B)
Thus, when # — o, Eq. (92) gives
r=—(AYBYHY{1—[2eh/AB(A4—4B)]},

and this value is the same as that given by Eq. (35).

IV. CONCLUSIONS AND APPLICATIONS

(1) We have noticed that islands and tube orbits
appear only in nonseparable dynamical systems. In the
general case of nonintegrable systems an infinite
number of sets of islands appears. These can be found

A=16 B= 09

A2/ =3

Trace
€esc

O Az V7777777777 57777 el
0 I 2 3 4 5 6 7
€

F16. 4. The trace of the monodromy matrix corresponding to
the orbit y=0, for 4 =1.6, B=0.9,, #=0.00765, as a function of e.
The unstable region is shaded.

approximately by means of the “third” integral, which
takes a different form for each set of islands.

A practical application of the above considerations
refers to the models of our Galaxy. Most models of
our Galaxy are nonseparable and nonintegrable; thus
the appearance of islands and tube orbits of different
orders (Ollongren 1965) is justified. On the other hand,
there are also a few separable models (e.g., Hori 1962).
In these models no tube orbits appear at all. However,
as we have noticed, separable systems are exceptional;
therefore it is quite probable that tube orbits do exist
in our Galaxy.

In order to find the positions and importance of the
real tube orbits of our Galaxy (i.e., for how large a set
of initial conditions we have tube orbits), a comparative
study of various models of the Galaxy is necessary.

(2) In the case of a nonintegrable system which is
near an integrable one the invariant curves on a
surface of section are, in general, well defined; they
are either regular invariant curves, or islands. On each
invariant curve one can define a rotation number 7.
Then a rotation curve gives r as a function of the
distance of each curve from the center. The rotation
curve is a smooth function in integrable cases, but it has
straight plateaus and small discontinuities at every
rational number 7 in nonintegrable cases.

The form of the rotation curve can be found approxi-
mately by means of the “third” integral. The maximum
r corresponds to the central periodic orbit, (which is
near the y axis), and the minimum # to the orbit y=0
(or a nearby orbit), or vice versa. Thus we have the
range of variation of 7 and consequently the kinds of
islands and tube orbits that should be expected in
every case.

(3) The maximum (or minimum) rotation number
can be found accurately by means of the characteristic
exponents of the periodic orbit near the y axis (central
periodic orbit). We have calculated the characteristic
exponents of this orbit and of the periodic orbit y=0
for various values of the perturbation e.

In one case the central periodic orbit becomes
unstable even before e reaches the value of the escape
perturbation e, while the orbit y=0 is stable well
beyond it. In other cases the central periodic orbit is
stable beyond e=eq.. Therefore the stability of a
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periodic orbit is not directly related to the escape
perturbation. It is related to a “third” integral, which
exists in a certain region near the periodic orbit,
sometimes even beyond the escape perturbation.
Therefore one may find in our Galaxy stars with
velocity greater than the velocity of escape, which do
not escape, because they happen to be near a stable
periodic orbit.

ACKNOWLEDGMENTS

This work began when one of us (J.H.) was a research
associate of the Royal Hellenic Research Foundation
and continued under the partial support of the U. S.
Air Force Office of Aerospace Research (OAR), Arling-
ton, Virginia, through the European Office of Aerospace
Research, OAR, U. S. Air Force, under contract
61(052)-952. Part of the work was done when one of us

HADJIDEMETRIOU

(G.C.) was a National Research Council-National
Academy of Sciences senior research associate at the
Institute for Space Studies, New York. The numerical
computations were made at the IBM 1620 computer
of the University of Thessaloniki and the IBM 360.75
computer of the Institute for Space Studies. We thank
all these institutions for their support.

REFERENCES

Contopoulos, G. 1963, Astron. J. 68, 1.

——. 1967, Bull. Astron. 2, Fasc. 1, 223.

Contopoulos, G., and Moutsoulas, M. 1966, Asiron. J. 71, 687.

Hadjidemetriou, J. 1967, ibid. 72, 865.

Hori, G. 1962, Publ. Astron. Soc. Japan 14, 353.

Moser, J. 1962, Nachr. Akad. Wiss. Giitingen, Math. Phys. KI. 1.

Moser, J. 1967, Math. Ann. 169, 136.

Ollongren, A. 1965, Ann. Rev. Astron. Astrophys. 3, 113,

Wintner, A. 1947, The Analytical Foundations of Celestial Me-
chanics (Princeton University Press, Princeton, New Jersey),
pp. 102f.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1968AJ.....73...86C

